INDIAN SCHOOL AL WADI AL KABIR

REVISION QUESTIONS

Class: XI
Sub: MATHEMATICS (Code 041)

Section A

Q.1. If $(2 a+b, a-b)=(9,3)$, then values of a and b
A $\quad 4,1$
B $4,-1$
C $\quad-4,1$
D $\quad-4,-1$
Q.2. Value of $\tan \frac{\pi}{12}$
A $2+\sqrt{3}$
B $2-\sqrt{3}$
C $\sqrt{3}-2$
D None of these
Q.3. If $(1+i)(2+i)(3+i)=a+i b$, then $\sqrt{a^{2}+b^{2}}$
A 10
B $10 \sqrt{2}$
$\begin{array}{ll}\text { C } & 10 \sqrt{3}\end{array}$
D $\quad 10 \sqrt{5}$
Q.4. If $A=\{x: x<7, x \in N\}$ and $B=\{y: y$ is a prime number less than 7$\}$, then $A-B=$
A $\quad\{2,4,6\}$
B $\{1,4,5,7\}$
C $\quad\{4,6,7\}$
D
$\{1,4,6\}$
Q.5. $\lim _{x \rightarrow 0} \frac{2 x+3 \sin x}{3 \sin x+2 x}=$
A 0
B 1
C 3
D 5
Q.6. If the middle term of the expansion $(1+\tan x)^{8}$ is equal to $\frac{70}{9}$, then value of x.
A $\quad n \pi$
B $n \pi+\frac{\pi}{3}$
C $\quad n \pi+\frac{\pi}{6}$
D $\quad n \pi+\frac{5 \pi}{6}$
Q.7. The sum of first 10 terms of the series $1+2+4+\cdots \ldots$
A 160
B 2048
C 1024
D 1023
Q.8. In triangle $\mathrm{ABC}, \mathrm{A}(0,0,6), \mathrm{B}(0,4,0)$ and $\mathrm{C}(6,0,0)$, then length of median through A
A $\quad \sqrt{34}$
B $\quad 6 \sqrt{2}$
C 7
D
10
Q.9. Distance between the lines whose equations are $3 x+4 y+5=0$ and $6 x+8 y-10=0$.
A 3
B 2
C 1
D 0
Q.10. If A and B are mutually exclusive events of a random experiment. If $\mathrm{P}(A \cup B)=0.85$ and $\mathrm{P}($ not $A)=0.6$, then $\mathrm{P}(\mathrm{B})$.
A 0.4
B 0.25
C 0.45
D 0.15
Q. 11 A company manufactures cassettes. Its cost and revenue functions are $C(x)=26000+30 x$ and $R(x)=43 x$ respectively where x is the number of cassettes produced and sold in a week. The minimum number of cassettes must be sold per week by the company to realise some profit is
Q. 12 If A and B are mutually exclusive events, $\mathrm{P}(\mathrm{A}$ and B$)=--------$
Q. $13 \quad n_{C_{8}}=n_{C_{2}}$, then $n_{C_{2}}=\ldots$
Q. 14 The sum of three consecutive terms of a GP is $\frac{21}{2}$ and product is 8 , then second term is \ldots..
Q. 15 While shuffling a pack of 52 cards, 2 cards are accidently dropped. Then the probability of the missing cards to be of different colours is

$$
\text { Short Answer Questions (Type - 1) of } \mathbf{1} \text { marks each }
$$

Q. 16 Write standard form: $i^{8}+i^{17}+i^{31}+i^{-21}$
Q. 17 Solve: $2(x-1)+3(1-5 x) \leq 3-x$
Q. 18 Determine whether X is a subset or Y , where $X=\left\{x: x=8^{n}-7 n-1, n \in N\right\}$ and $Y=\{49 n-49\}$. Justify your answer.
Q. 19 Write roster form of the relation $\mathrm{R}=\{(x, y): 2 x+3 y=30, x, y \in N\}$
Q. 20 Which term in the expansion of $\left(\sqrt{x}+\frac{2}{3 x}\right)^{12}$ is independent of x ?

Section B : Short Answer Questions (Type - 2) of 2 marks each
Q.21. Find domain and range of the real valued function: $\mathrm{f}(\mathrm{x})=\sqrt{25-x^{2}}$.
Q.22. Evaluate: $4 \cos ^{2} \frac{3 \pi}{4}+7 \sin ^{2} \frac{29 \pi}{3}$.
Q.23. If four digit numbers greater than 5000 are randomly formed from the digits $0,1,3,5$ and 7 , what is the probability of forming a number divisible by 5 when the repetition of digits is not allowed?
Q.24. Two students A and B appeared in an examination. The probability that A will qualify is 0.05 and that B will qualify the examination is 0.1 . The probability that both will qualify the examination is 0.02 . Find the probability thati). both A and B will not qualify the examination

> ii). only one of them will qualify the examination.
Q.25. Find mean deviation from median:

x	5	7	9	11	13	15
f	3	5	8	5	3	2

Q.26. If all the letters of the word 'LIMIT' are arranged in all possible ways as listed in dictionary, then what is the rank of the word 'TIILM'? OR

A question paper consists of 10 questions, divided in to two parts, section A and B, each containing 5 questions. A student is required to attempt 7 questions in all, taking at least three questions from each part. In how many ways can the student select the questions?

Section C : Long Answer Questions (Type - 1) of $\mathbf{3}$ marks each
Q.27. Let $U=\{1,2,3, . .10\}, A=\{2,3,4,5\}, B=\{2,3,7,8\}, C=\{1,3,5,7,9\}$.
(i) \quad Find $(A \cup(B \cap C))^{\prime}$
(ii) Verify: $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
Q.28. Prove: $\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1+\cos \frac{5 \pi}{8}\right)\left(1+\cos \frac{7 \pi}{8}\right)=\frac{1}{8}$.
Q.29. Three Numbers are in AP and their sum is 15 , If $1,3,9$ be added to them respectively, they form a G P. Find the numbers.
Q.30. Find the equation of a line intersecting y axis at a distance of 3 units above origin and makes an angle 135° with the positive direction of x axis.
(i) Reduce the equation of the line into normal form.
(ii) Find the equation of line parallel to it and passing through ($2,-5$) OR

Find the image of $(3,4)$ with respect to the line $x+y=3$
Q.31. Find equation of the ellipse, length of whose major axis is 24 and foci $(\pm 6,0)$. Also find the coordinates of its vertices and length of latus rectum.
Q.32. If $f(x)=\left\{\begin{array}{c}\frac{x^{5}-32}{x^{2}-4}, x<2 \\ \frac{k\left(x^{2}-x-2\right)}{x-2}, x>2\end{array}\right.$ and $\lim _{x \rightarrow 2} f(x)$ exists, find the value of k.

Q33 If $y=\frac{\sec x+\tan x}{\sec x-\tan x}$, prove that $\frac{d y}{d x}=\frac{2 \cos x}{(1-\sin x)^{2}}$ OR
Evaluate: $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-x-2}$

Section D : Long Answer Questions (Type - 2) of 5 marks each
Q.34. Find mean, variance and standard deviation for the following:

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
frequency	2	7	8	11	7	7	5	3

Q.35. Expand and simplify: $(\sqrt{2}+1)^{4}-(\sqrt{2}-1)^{4}$
Q.36. Prove: $\frac{\sin (y-z)}{\cos y \cos z}+\frac{\sin (z-x)}{\cos z \cos x}+\frac{\sin (x-y)}{\cos x \cos y}=0$.
Q.37. Consider the terms in the expansion of $(2+3 x)^{12}$

Write a) General term
b) coefficient of x^{7}
c) $5^{\text {th }}$ term from the end
d) Middle term(s)

