

INDIAN SCHOOL AL WADI AL KABIR

REVISION QUESTIONS

Class: XI Sub: MATHEMATICS (Code 041) Section A **Q.1**. If (2a + b, a - b) = (9, 3), then values of a and b **B** 4, -1 4, 1 Α С -4, 1 D -4, -1 **Q.2.** Value of $tan \frac{\pi}{12}$ **A** $2 + \sqrt{3}$ **B** $2 - \sqrt{3}$ **C** $\sqrt{3} - 2$ **D** None of these *If* (1+i)(2+i)(3+i) = a + ib, then $\sqrt{a^2 + b^2}$ Q.3. $10\sqrt{2}$ **A** 10 B С $10\sqrt{3}$ $10\sqrt{5}$ D If $A = \{x: x < 7, x \in N\}$ and $B = \{y: y \text{ is a prime number less than } 7\}$, then $A - B = \{y: y \text{ is a prime number less than } 7\}$. **Q.4**. $\{2, 4, 6\}$ **B** $\{1, 4, 5, 7\}$ **C** $\{4, 6, 7\}$ Α D { 1,4,6} Q.5. $\lim_{x \to 0} \frac{2x + 3 \sin x}{3 \sin x + 2x} =$ **A** 0 **B** 1 **C** 3 **D** 5 If the middle term of the expansion $(1 + tanx)^8$ is equal to $\frac{70}{9}$, then value of x. Q.6.

B $n\pi + \frac{\pi}{3}$ **C** $n\pi + \frac{\pi}{6}$ **D** $n\pi + \frac{5\pi}{6}$ Α ηπ

- The sum of first 10 terms of the series $1 + 2 + 4 + \cdots$... **O.7**. **A** 160 **B** 2048 **C** 1024 **D** 1023 Q.8. In triangle ABC, A(0, 0, 6), B(0, 4, 0) and C(6, 0, 0), then length of median through A $6\sqrt{2}$ $\sqrt{34}$ **C** 7 А B D 10 Q.9. Distance between the lines whose equations are 3x + 4y + 5 = 0 and 6x + 8y - 10 = 0. **A** 3 **B** 2 **C** 1 **D** 0 If A and B are mutually exclusive events of a random experiment. If $P(A \cup B) = 0.85$ and **Q.10**. P(not A) = 0.6, then P(B). **A** 0.4 **B** 0.25 **C** 0.45 **D** 0.15 A company manufactures cassettes. Its cost and revenue functions are C(x) = 26000 + 30x and **Q.11** R(x) = 43x respectively where x is the number of cassettes produced and sold in a week. The minimum number of cassettes must be sold per week by the company to realise some profit is
- Q.12 If A and B are mutually exclusive events, P(A and B) =-----
- Q.13 $n_{C_8} = n_{C_2}$, then $n_{C_2} = \dots$
- Q.14 The sum of three consecutive terms of a GP is $\frac{21}{2}$ and product is 8, then second term is
- **Q.15** While shuffling a pack of 52 cards, 2 cards are accidently dropped. Then the probability of the missing cards to be of different colours is

Short Answer Questions (Type -1) of **1** marks each

- **Q.16** Write standard form: $i^8 + i^{17} + i^{31} + i^{-21}$
- **Q.17** Solve: $2(x-1) + 3(1-5x) \le 3 x$

- Q.18 Determine whether X is a subset or Y, where $X = \{x : x = 8^n 7n 1, n \in N\}$ and $Y = \{49n 49\}$. Justify your answer.
- **Q.19** Write roster form of the relation $R = \{(x, y): 2x + 3y = 30, x, y \in N\}$
- **Q.20** Which term in the expansion of $\left(\sqrt{x} + \frac{2}{3x}\right)^{12}$ is independent of x ?

Section **B** : Short Answer Questions (Type -2) of **2** marks each

- **Q.21.** Find domain and range of the real valued function: $f(x) = \sqrt{25 x^2}$.
- **Q.22.** Evaluate: $4\cos^2\frac{3\pi}{4} + 7\sin^2\frac{29\pi}{3}$.
- **Q.23.** If four digit numbers greater than 5000 are randomly formed from the digits 0, 1, 3, 5 and 7, what is the probability of forming a number divisible by 5 when the repetition of digits is not allowed?
- Q.24. Two students A and B appeared in an examination. The probability that A will qualify is 0.05 and that B will qualify the examination is 0.1. The probability that both will qualify the examination is 0.02. Find the probability thati). both A and B will not qualify the examination

ii). only one of them will qualify the examination.

Q.25. Find mean deviation from median:

Х	5	7	9	11	13	15
f	3	5	8	5	3	2

Q.26. If all the letters of the word 'LIMIT' are arranged in all possible ways as listed in dictionary, then what is the rank of the word 'TIILM' ? OR

A question paper consists of 10 questions, divided in to two parts, section A and B, each containing 5 questions. A student is required to attempt 7 questions in all, taking at least three questions from each part. In how many ways can the student select the questions?

Section C : Long Answer Questions (Type – 1) of 3 marks each

Q.27. Let $U = \{1, 2, 3, ..10\}$, $A = \{2, 3, 4, 5\}$, $B = \{2, 3, 7, 8\}$, $C = \{1, 3, 5, 7, 9\}$.

- (i) Find $(A \cup (B \cap C))'$
- (ii) Verify: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- **Q.28.** Prove: $\left(1 + \cos\frac{\pi}{8}\right) \left(1 + \cos\frac{3\pi}{8}\right) \left(1 + \cos\frac{5\pi}{8}\right) \left(1 + \cos\frac{7\pi}{8}\right) = \frac{1}{8}$.
- **Q.29.** Three Numbers are in AP and their sum is 15, If 1, 3, 9 be added to them respectively, they form a G P. Find the numbers.
- Q.30. Find the equation of a line intersecting y axis at a distance of 3 units above origin and makes an angle 135° with the positive direction of x axis.
 - (i) Reduce the equation of the line into normal form.
 - (ii) Find the equation of line parallel to it and passing through (2, -5)OR

Find the image of (3, 4) with respect to the line x + y = 3

Q.31. Find equation of the ellipse, length of whose major axis is 24 and foci (± 6 , 0). Also find the coordinates of its vertices and length of latus rectum.

Q.32.
If
$$f(x) = \begin{cases} \frac{x^5 - 32}{x^2 - 4}, x < 2\\ \frac{k(x^2 - x - 2)}{x - 2}, x > 2 \end{cases}$$
 and $\lim_{x \to 2} f(x)$ exists, find the value of k

Q33 If
$$y = \frac{secx+tanx}{secx-tanx}$$
, prove that $\frac{dy}{dx} = \frac{2cosx}{(1-sinx)^2}$ OR
Evaluate: $\lim_{x \to 2} \frac{x^3-8}{x^2-x-2}$

Section D : Long Answer Questions (Type – 2) of 5 marks each

Q.34. Find mean, variance and standard deviation for the following:

Class	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
frequency	2	7	8	11	7	7	5	3

Q.35. Expand and simplify: $(\sqrt{2} + 1)^4 - (\sqrt{2} - 1)^4$

Q.36. Prove: $\frac{\sin(y-z)}{\cos y \cos z} + \frac{\sin(z-x)}{\cos z \cos x} + \frac{\sin(x-y)}{\cos x \cos y} = 0.$

Q.37. Consider the terms in the expansion of $(2 + 3x)^{12}$

Write a) General term

b) coefficient of x^7 c) 5th term from the end d) Middle term(s)
